

Automating Repetitive Tasks with Python and OpenCV in Image and Video Processing

J. JUSLIN SEGA, Snehal H. Chaflekar, M.
ARJUNKUMAR
SRM INSTITUTE OF SCIENCE AND TECHNOLOGY,
PRIYADARSHINI BHAGWATI COLLEGE OF
ENGINEERING, T.J.S. ENGINEERING COLLEGE

Automating Repetitive Tasks with Python and OpenCV in Image and Video Processing

¹J. JUSLIN SEGA, Assistant Professor, CSE, SRM Institute of Science and Technology, Ramapuram. Mail id: Rjsega523@gmail.com , Mobile number: 99403 64303.

²Snehal H. Chaflekar, Assistant professor, Information Technology, Priyadarshini Bhagwati College of Engineering, Nagpur, Mobile number: 824 800 2831. Mail id: schaflekarpcod@gmail.com.

³M. ARJUNKUMAR, Assistant Professor, EEE, T.J.S. ENGINEERING COLLEGE, TJS NAGAR, PERUVOYAL, NEAR KAVARAI PETTAI, GUMMIDIPOONDI TALUK, TIRUVALLUR DISTRICT, 601206. Mobile No.: 99403 64303, Mail ID: 35143004aug12@gmail.com.

Abstract

The exponential growth in visual data across industries has necessitated the development of efficient, scalable, and intelligent automation frameworks for image and video processing. Manual handling of repetitive tasks such as object detection, background subtraction, feature extraction, and frame annotation is not only labor-intensive but also prone to inconsistencies, making automation a vital solution for modern computer vision applications. This chapter presents a comprehensive exploration of automation techniques using Python in conjunction with the OpenCV library, focusing on the design, implementation, and optimization of end-to-end processing pipelines. Core topics include background-foreground segmentation, object tracking, batch image transformations, real-time video stream handling, and integration with file systems, databases, and streaming protocols. Emphasis is placed on the architecture of intelligent task automation, fault-tolerant scripting, and system monitoring, ensuring robustness, scalability, and adaptability. The discussion is grounded in both theoretical foundations and practical applications, illustrating how automation reduces operational overhead while enhancing accuracy and throughput in visual analytics. The methodologies and case studies provided serve as a valuable reference for researchers, engineers, and practitioners seeking to deploy reliable and intelligent automation systems in computer vision environments.

Keywords: Image Processing Automation, Video Analytics, Python Scripting, OpenCV, Object Tracking, Background Subtraction

Introduction

The increasing digitization of visual information in various sectors such as surveillance, healthcare, agriculture, manufacturing, and autonomous systems has led to an unprecedented surge in the volume of image and video data [1]. Manual processing of such data is inefficient and impractical, particularly when the tasks are repetitive and require consistent accuracy across a large dataset [2]. The need for automated solutions has become critical to meet the growing demand for fast, accurate, and scalable image and video analysis [3]. Automation minimizes human

intervention and enhances operational throughput, thereby streamlining repetitive processes like image enhancement, object localization, and video summarization [4]. This chapter explores the application of Python scripting, paired with the OpenCV library, to develop robust automation frameworks capable of executing a wide range of computer vision tasks. The integration of automation not only improves efficiency but also ensures that visual data workflows are repeatable, traceable, and adaptable across various operational environments [5].

Python has emerged as a preferred language for computer vision due to its readability, vast ecosystem, and seamless integration with scientific computing libraries [6]. When combined with OpenCV—a high-performance library optimized for real-time computer vision—Python enables the development of sophisticated image and video processing systems with minimal development overhead [7]. OpenCV offers a comprehensive set of functionalities, including filtering, morphological operations, object tracking, feature matching, and contour detection, which are essential for automated tasks [8]. These capabilities allow the implementation of batch image processing routines, real-time video frame analysis, and adaptive feature extraction in automated pipelines [9]. This combination empowers developers and researchers to build scalable solutions that can operate autonomously in dynamic environments where visual input is continuously evolving [10].

In the context of automation, the architecture of image and video processing pipelines plays a pivotal role [11]. An efficient pipeline is designed to handle input acquisition, preprocessing, feature computation, analysis, and output generation with minimal latency and maximum reliability [12]. The integration of automation routines with file systems, databases, and streaming protocols enhances the pipeline's ability to manage input from varied sources and store processed results systematically [13]. The incorporation of conditional execution, error handling, and parallel processing techniques adds robustness to the automation system, ensuring continuous operation even in the presence of unexpected data or partial system failures [14]. This approach not only reduces manual supervision but also supports the deployment of real-time and large-scale automation in production environments. By leveraging Python's multiprocessing capabilities and OpenCV's optimized processing routines, it becomes feasible to construct high-performance automation systems that meet both accuracy and speed requirements [15].